Multiplierless digital learning algorithm for cellular neural networks
نویسندگان
چکیده
منابع مشابه
An Optimized Firefly Algorithm based on Cellular Learning Automata for Community Detection in Social Networks
The structure of the community is one of the important features of social networks. A community is a sub graph which nodes have a lot of connections to nodes of inside the community and have very few connections to nodes of outside the community. The objective of community detection is to separate groups or communities that are linked more closely. In fact, community detection is the clustering...
متن کاملDigital Arithmetic Using Analog Cellular Neural Networks
We discuss the realization of digital arithmetic using analog arrays in the form of Cellular Neural Networks (CNNs). These networks replace the fast switching nodes of logic gates with slewing nodes using current sources driving into capacitors; this provides both low current spikes and low voltage slewing rates, reducing system noise and cross-talk in lowvoltage mixed-signal applications. In t...
متن کاملDistributed learning algorithm for feedforward neural networks
With the appearance of huge data sets new challenges have risen regarding the scalability and efficiency of Machine Learning algorithms, and both distributed computing and randomized algorithms have become effective ways to handle them. Taking advantage of these two approaches, a distributed learning algorithm for two-layer neural networks is proposed. Results demonstrate a similar accuracy whe...
متن کاملLocal learning algorithm for optical neural networks.
An anti-Hebbian local learning algorithm for two-layer optical neural networks is introduced. With this learning rule, the weight update for a certain connection depends only on the input and output of that connection and a global, scalar error signal. Therefore the backpropagation of error signals through the network, as required by the commonly used back error propagation algorithm, is avoide...
متن کاملLearning Cellular Automation Dynamics with Neural Networks
We have trained networks of E II units with short-range connections to simulate simple cellular automata that exhibit complex or chaotic behaviour. Three levels of learning are possible (in decreasing order of difficulty): learning the underlying automaton rule, learning asymptotic dynamical behaviour, and learning to extrapolate the training history. The levels of learning achieved with and wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications
سال: 2001
ISSN: 1057-7122
DOI: 10.1109/81.922467